纯python实现机器学习之kNN算法示例 前面文章分别简单介绍了线性回归,逻辑回归,贝叶斯分类,并且用python简单实现。这篇文章介绍更简单的 knn, k-近邻算法(kNN,k-NearestNeighbor)。 k-近邻算法(kNN,k-NearestNeighbor),是最简单的机器学习分类算法之一,其核心思想在于用距离目标最近的k个样本数据的分类来代表目标的分类(这k个样本数据和目标数据最为相似)。 原理 kNN算法的核心思想是用距离最近(多种衡量距离的方式)的k个样本数据来代表目标数据的分类。 具体讲,存在训练样本集, 每个样本都包含数据特征和所属分类值。 输入新的数据,将该数据和训练样本集汇中每一个样本比较,找到距离最近的k个,在k个数据中,出现次数做多的那个分类,即可作为新数据的分类。 如上图: 需要判断绿色是什么形状。当k等于3时,属于三角。当k等于5是,属于方形。 因此该方法具有一下特点: 监督学习:训练样本集中含有分类信息 算法简单, 易于理解实现 结果收到k值的影响,k一般不超过20. 计算量大,需要计算与样本集中每个样本的距离。 训练样本集不平衡导致结果不准确问题 接下来用oython 做个简单实现, 并且尝试用于约会网站配对。 python简单实现 def classify(inX, dataSet, labels, k): """ 定义knn算法分类器函数 :param inX: 测试数据 :param dataSet: 训练数据 :param labels: 分类类别 :param k: k值 :return: 所属分类 """ dataSetSize = dataSet.shape[0] #shape(m, n)m列n个特征 diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet sqDiffMat = diffMat ** 2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances ** 0.5 #欧式距离 sortedDistIndicies = distances.argsort() #排序并返回index classCount = {} for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 #default 0 sortedClassCount = sorted(classCount.items(), key=lambda d:d[1], reverse=True) return sortedClassCount[0][0] 算法的步骤上面有详细的介绍,上面的计算是矩阵运算,下面一个函数是代数运算,做个比较理解。 def classify_two(inX, dataSet, labels, k): m, n = dataSet.shape # shape(m, n)m列n个特征 # 计算测试数据到每个点的欧式距离 distances = [] for i in range(m): sum = 0 for j in range(n): sum += (inX[j] - dataSet[i][j]) ** 2 distances.append(sum ** 0.5) sortDist = sorted(distances) # k 个最近的值所属的类别 classCount = {} for i in range(k): voteLabel = labels[ distances.index(sortDist[i])] classCount[voteLabel] = classCount.get(voteLabel, 0) + 1 # 0:map default sortedClass = sorted(classCount.items(), key=lambda d:d[1], reverse=True) return sortedClass[0][0] 有了上面的分类器,下面进行最简单的实验来预测一下: def createDataSet(): group = np.array([[1, 1.1], [1, 1], [0, 0], [0, 0.1]]) labels = ['A', 'A', 'B', 'B'] return group, labels 上面是一个简单的训练样本集。 if __name__ == '__main__': dataSet, labels = createDataSet() r = classify_two([0, 0.2], dataSet, labels, 3) print(r) 执行上述函数:可以看到输出B, [0 ,0.2]应该归入b类。 上面就是一个最简单的kNN分类器,下面有个例子。 kNN用于判断婚恋网站中人的受欢迎程度 训练样本集中部分数据如下: 40920 8.326976 0.953952 3 14488 7.153469 1.673904 2 26052 1.441871 0.805124 1 75136 13.147394 0.428964 1 38344 1.669788 0.134296 1 第一列表示每年获得的飞行常客里程数, 第二列表示玩视频游戏所耗时间百分比, 第三类表示每周消费的冰淇淋公升数。第四列表示分类结果,1, 2, 3 分别是 不喜欢,魅力一般,极具魅力。 将数据转换成numpy。 # 文本转换成numpy def file2matrix(filepath="datingSet.csv"): dataSet = np.loadtxt(filepath) returnMat = dataSet[:, 0:-1] classlabelVector = dataSet[:, -1:] return returnMat, classlabelVector 首先对数据有个感知,知道是哪些特征影响分类,进行可视化数据分析。 # 2, 3列数据进行分析 def show_2_3_fig(): data, cls = file2matrix() fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(data[:, 1], data[: ,2], c=cls) plt.xlabel("playing game") plt.ylabel("Icm Cream") plt.show() 如上图可以看到并无明显的分类。 可以看到不同的人根据特征有明显的区分。因此可以使用kNN算法来进行分类和预测。 由于后面要用到距离比较,因此数据之前的影响较大, 比如飞机里程和冰淇淋数目之间的差距太大。因此需要对数据进行归一化处理。 # 数据归一化 def autoNorm(dataSet): minVal = dataSet.min(0) maxVal = dataSet.max(0) ranges = maxVal - minVal normDataSet = np.zeros(dataSet.shape) m, n = dataSet.shape # 行, 特征 normDataSet = dataSet - minVal normDataSet = normDataSet / ranges return normDataSet, ranges, minVal 衡量算法的准确性 knn算法可以用正确率或者错误率来衡量。错误率为0,表示分类很好。 因此可以将训练样本中的10%用于测试,90%用于训练。 # 定义测试算法的函数 def datingClassTest(h=0.1): hoRatio = h datingDataMat, datingLabels = file2matrix() normMat, ranges, minVals = autoNorm(datingDataMat) m, n = normMat.shape numTestVecs = int(m * hoRatio) #测试数据行数 errorCount = 0 # 错误分类数 # 用前10%的数据做测试 for i in range(numTestVecs): classifierResult = classify(normMat[i, :], normMat[numTestVecs:m, :], datingLabels[numTestVecs:m], 3) # print('the classifier came back with: %d,the real answer is: %d' % (int(classifierResult), int(datingLabels[i]))) if classifierResult != datingLabels[i]: errorCount += 1 print("the total error rate is: %f" % (errorCount / float(numTestVecs))) 调整不同的测试比例,对比结果。 使用knn进行预测。 有了训练样本和分类器,对新数据可以进行预测。模拟数据并进行预测如下: # 简单进行预测 def classifypersion(): resultList = ["none", 'not at all','in small doses','in large doses'] # 模拟数据 ffmiles = 15360 playing_game = 8.545204 ice_name = 1.340429 datingDataMat, datingLabels = file2matrix() normMat, ranges, minVals = autoNorm(datingDataMat) inArr = np.array([ffmiles, playing_game, ice_name]) # 预测数据归一化 inArr = (inArr - minVals) / ranges classifierResult = classify(inArr, normMat, datingLabels, 3) print(resultList[int(classifierResult)]) 可以看到基本的得到所属的分类。 完成代码和数据请参考: github:kNN 总结 kNN 监督学习 数据可视化 数据归一化,不影响计算 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持中文源码网。